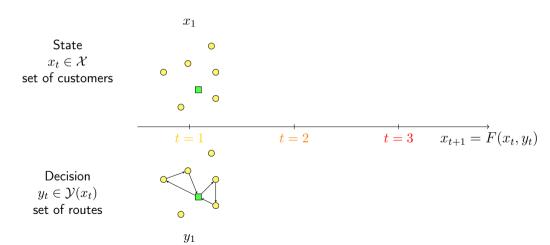
Winning Approach for the EURO-NeurIPS 2022 Dynamic Vehicle Routing Competition

Léo Baty¹, Kai Jungel², Patrick Klein², Maximilian Schiffer², Axel Parmentier¹

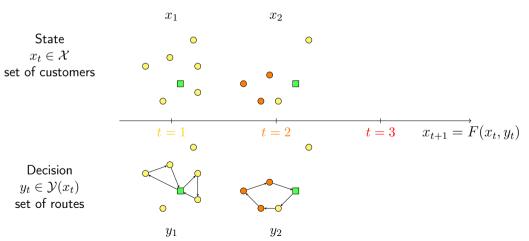
¹CERMICS, École des Ponts, ²Technical University of Munich

February 17, 2023

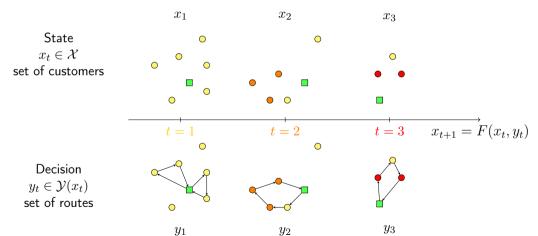
Dynamic Vehicle Routing Problem with Time Windows (Dynamic VRPTW)



Dynamic Vehicle Routing Problem with Time Windows (Dynamic VRPTW)



Dynamic Vehicle Routing Problem with Time Windows (Dynamic VRPTW)



Dynamic VRPTW

Introduction

A solution of this problem is a stationary policy:

$$\pi \colon \mathcal{X} \to \mathcal{Y}$$
$$x_t \mapsto y_t$$

Objective: find π^* , serving all customers before end of horizon, and minimizing total cost

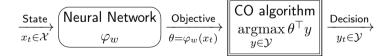
$$\pi^\star = \operatorname*{argmin}_{\pi} \mathbb{E} \left[\sum_{\text{epochs } t} \text{ total cost of routes in decision } y_t = \pi(x_t) \right]$$

Winner team of the EURO-NeurIPS challenge

► Euro-NeurIPS competition¹

Introduction

- ▶ 100 entering customers at each time step
- maximum 2 minutes per time step
- Our team won first prize of the challenge
- lacktriangle Policy π_w , Machine Learning (ML) and Combinatorial Optimization (CO) pipeline



¹https://euro-neurips-vrp-2022.challenges.ortec.com/

Training the policy

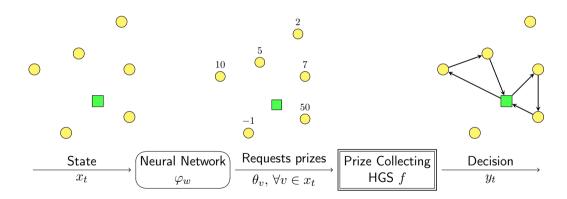
Training the policy

Results

Introduction

000

Introduction



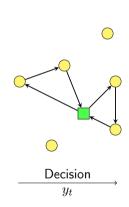
Policy based on a Deep Learning pipeline

Epoch decisions can be seen as the solution of a Prize Collecting VRPTW:

- Serving customers is optional
- ightharpoonup Serving customer v gives prize θ_v
- Objective: maximize total profit minus routes costs

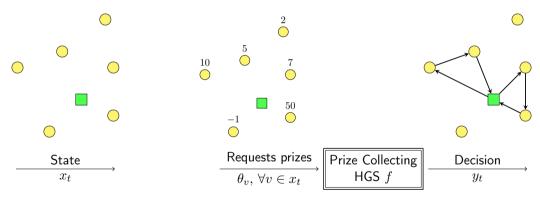
$$\max_{y \in \mathcal{Y}(x_t)} \underbrace{\sum_{(u,v) \in x_t^2} \theta_v y_{u,v} - \sum_{(u,v) \in x_t^2} c_{u,v} y_{u,v}}_{\text{total profit}} \cdot \underbrace{\sum_{(u,v) \in x_t^2} c_{u,v} y_{u,v}}_{\text{total routes cost}}.$$

- ► Algorithm: Prize Collecting Hybrid Genetic Search
- \Rightarrow Combinatorial Optimization layer f



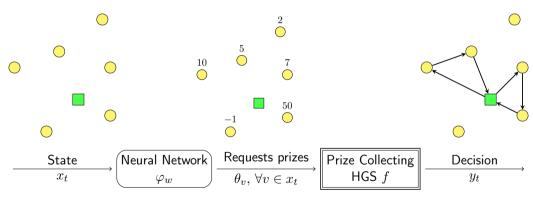
Policy based on a Deep Learning pipeline

Difficulty: no natural way of computing meaningful prizes



Policy based on a Deep Learning pipeline

Solution: use a neural network to predict request prizes $\theta = \varphi_w(x_t)$



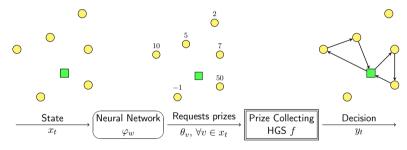
Parameterized policy: $\pi_w \colon x_t \longmapsto f(\varphi_w(x_t))$

Policy encoded as a Deep Learning pipeline

Training the policy

Learning problem

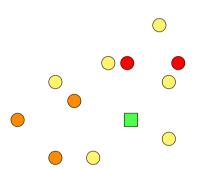
Goal: find parameters w such that our pipeline is a "good" policy.



$$\hat{w} = \underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\varphi_{w}(x^{i}), \bar{y}^{i})$$

We need to build a labeled dataset $\mathcal{D} = \{(x^1, \bar{y}^1), \dots, (x^n, \bar{y}^n)\}.$

Learn to imitate anticipative decisions

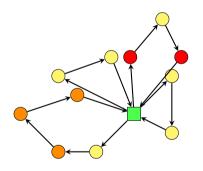


- ► Full instance with all future customers
- ► Release times:
 - ightharpoonup t = 1
 - ightharpoonup t=2
 - ightharpoonup t = 3

Training the policy

000000

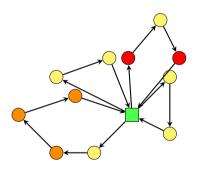
Learn to imitate anticipative decisions



- ► Full instance with all future customers
- Release times:
 - ightharpoonup t = 1
 - t=2
 - t = 3
- ► Hybrid Genetic Search
- Anticipative lower bound

Learn to imitate anticipative decisions

Introduction



We rebuild the anticipative decisions a posteriori

i	1	2	3
	0	0	0
x^{i}	0 0	•	0 0
	•	0 0	
$ar{y}^i$			

A natural loss function

$$(x,\bar{y})\in\mathcal{D},\ \theta=\varphi_w(x)$$

$$f \colon \theta \longmapsto \operatorname*{argmax}_{y \in \mathcal{Y}(x)} \theta^{\top} g(y) + h(y)$$

with
$$g(y) = \left(\sum_{u \in x} y_{u,v}\right)_{v \in x}$$
 and $h(y) = -\sum_{(u,v) \in x^2} c_{u,v} y_{u,v}$

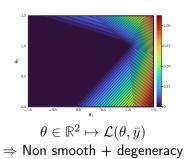
Non-optimality of target routes \bar{y} as a solution of f

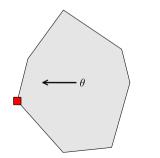
$$\mathcal{L}(\theta, \bar{y}) = \max_{y \in \mathcal{Y}} \{ \theta^{\top} g(y) + h(y) \} - (\theta^{\top} g(\bar{y}) + h(\bar{y}))$$

A natural loss function

Non-optimality of target routes \bar{y} as a solution of f

$$\mathcal{L}(\boldsymbol{\theta}, \bar{y}) = \max_{\boldsymbol{y} \in \mathcal{Y}} \{ \boldsymbol{\theta}^{\top} g(\boldsymbol{y}) + h(\boldsymbol{y}) \} - (\boldsymbol{\theta}^{\top} g(\bar{y}) + h(\bar{y}))$$





Building a differentiable loss

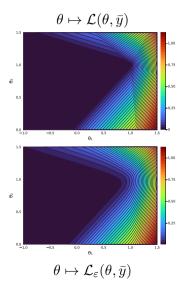
Theorem [Berthet et al., 2020, Baty et al., 2023]

The perturbed loss function

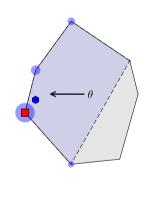
$$\mathcal{L}_{\varepsilon}(\theta, \bar{y}) = \mathbb{E}\left[\max_{y \in \mathcal{Y}} (\theta + \varepsilon Z)^{\top} g(y) + h(y)\right] - (\theta^{\top} g(\bar{y}) + h(\bar{y}))$$

with $\varepsilon \in \mathbb{R}_+$, and $Z \sim \mathcal{N}(0, I_d)$, is convex and differentiable in θ

$$\nabla_{\theta} \mathcal{L}_{\varepsilon}(\theta, \bar{y}) = \mathbb{E}\left[g\left(\underset{y \in \mathcal{Y}}{\operatorname{argmax}}(\theta + \varepsilon Z)^{\top} g(y) + h(y)\right)\right] - g(\bar{y})$$
$$= \mathbb{E}[g(f(\theta + \varepsilon Z))] - g(\bar{y})$$



Introduction 0000



Policy encoded as a Deep Learning pipeline

2 Training the policy

Results

Introduction

Team name	Dynamic cost	Improvement over 9th team
Kléopatra	348831.56	5.9%
Team_SB	358161.36	3.3%
${\tt OptiML}$	359270.09	3.1%
HustSmart	361803.57	2.4%
ORberto Hood and the Barrymen	362481.13	2.2%
UPB	367007.49	1%
Miles To Go Before We Sleep	369098.13	0.4%
HowToRoute	369797.03	0.2%
Kirchhoffslaw	370670.53	0%

Comparison to baseline policies

Introduction

Policy	Kléopatra	Rolling-horizon	Monte-Carlo
Runtime	90s	450s	4050s

Table: Runtime for each time step

Conclusion

Contributions:

- Deep Learning pipeline for the Dynamic VRPTW
- ► Generalization of the learning approach
 - Julia open source implementation in InferOpt. jl² [Dalle et al., 2022]

Perspectives:

▶ There is still room for improvement, especially on the policy to imitate

²https://github.com/axelparmentier/InferOpt.jl

References

- Baty, L., Jungel, K., Klein, P., Parmentier, A., and Schiffer, M. (2023). Combinatorial optimization enriched machine learning to solve the dynamic vehicle routing problem with time windows.
- Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-P., and Bach, F. (2020). Learning with Differentiable Perturbed Optimizers. arXiv:2002.08676 [cs, math, stat].
- Dalle, G., Baty, L., Bouvier, L., and Parmentier, A. (2022).

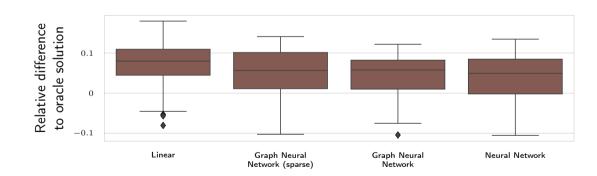
 Learning with Combinatorial Optimization Layers: A Probabilistic Approach.
- Vidal, T. (2021). Hybrid Genetic Search for the CVRP: Open-Source Implementation and SWAP* Neighborhood.

Features

Features

Observed		Distribution knowledge		
x coordinate	x_r	Quantiles from	distribution of travel time to all locations:	
y coordinate	y_r	1% quantile	$Pr[X < x] \le 0.01, X \sim t_{r,:}$	
demand	q_r	5% quantile	$Pr[X < x] \le 0.05, X \sim t_{r,:}$	
service time	s_r	10% quantile	$Pr[X < x] \le 0.1, X \sim t_{r,:}$	
time window start	l_r	50% quantile	$Pr[X < x] \le 0.5, X \sim t_{r,:}$	
time window end	u_r	Quantiles from	distribution of slack time to all time windows:	
time from depot to request	$t_{d,r}$	0% quantile	$Pr[X < x] \le 0, X \sim u_{:} - (l_r + s_r + t_{r,:})$	
relative time depot to request	$t_{d,r}/u_r - s_r)$	1% quantile	$Pr[X < x] \le 0.01, X \sim u_{:} - (l_r + s_r + t_{r,:})$	
time window start / rem. time	$l_r/(T_{max}-\tau_e)$	5% quantile	$Pr[X < x] \le 0.05, X \sim u_{:} - (l_r + s_r + t_{r,:})$	
time window end / rem. time	$u_r/(T_{max}-\tau_e)$	10% quantile	$Pr[X < x] \le 0.1, X \sim u_1 - (l_r + s_r + t_{r,:})$	
is must dispatch	$\mathbb{1}_{\tau_e + \Delta + t_{d,r}} > u_r$	50% quantile	$Pr[X < x] \le 0.5, X \sim u_{:} - (l_r + s_r + t_{r,:})$	

Predictors



Other experiments

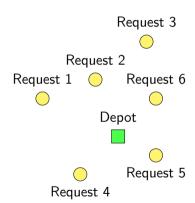
Num. of training instances							
1	2	5	10	15	20	25	30
9.29%	6.64%	5.95%	4.56%	3.79%	4.48%	3.91%	3.84%

Size of training instances					
10	25	50	75	100	
8.05%	5.78%	4.00%	5.06%	10.39%	

I mitated	upper-bound strategies				
best seed	60 min	15 min	5 min		
6.68%	5.97%	4.79%	3.49%		

Depot: vehicles capacity Q

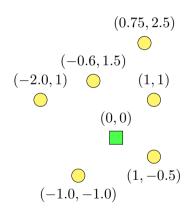
Requests $v \in V$



Depot: vehicles capacity Q

Requests $v \in V$

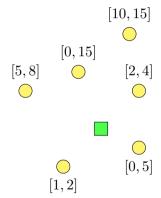
1. Coordinates $p \Rightarrow costs c_{v,v'}$



Depot: vehicles capacity Q

Requests $v \in V$

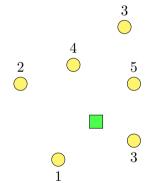
- 1. Coordinates $p \Rightarrow \cos c_{v,v'}$
- 2. Time Windows $[\ell, u]$



Depot: vehicles capacity Q

Requests $v \in V$

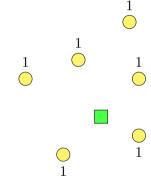
- 1. Coordinates p \Rightarrow costs $c_{v,v'}$
- 2. Time Windows $[\ell, u]$
- 3. Demand q



Depot: vehicles capacity Q

Requests $v \in V$

- 1. Coordinates p \Rightarrow costs $c_{v,v'}$
- 2. Time Windows $[\ell, u]$
- 3. Demand q
- 4. Service time s

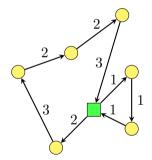


Static VRPTW

Depot: vehicles capacity Q

Requests $v \in V$

- 1. Coordinates p \Rightarrow costs $c_{v,v'}$
- 2. Time Windows $[\ell, u]$
- 3. Demand q
- 4. Service time s



Objective: build feasible routes serving all requests at minimum cost

State-of-the-art algorithm: Hybrid Genetic Search (HGS)

- ► Genetic algorithm
- Maintains a population of solutions
- Improves it over the iterations using crossover combined with neighborhood searches

See [Vidal, 2021] for details.