leo baty e enpe. fo
\rightarrow batyleo.github. io/teraching /RO2023/

1. Operation Research: Introduction

27 Septembre 2023
(1) Problems and algorithms
(2) Graphs
(3) Modeling with Mixed Integer Linear Programs

Voyageur de commerce (ortimizatia)
Problems. Instance: n wiles, coordonnées $\left(x_{i}, y_{i}\right), i \in[n]$

- Question: tans de cont minimum

Problem
Input/instance
Question

Two types of problems:

- Decision problems : the answer to the question is Yes or No
- Optimization problems:

$$
\begin{equation*}
\min _{x} c(x) \text { s.t. } x \in \mathcal{X} \tag{P}
\end{equation*}
$$

Voyageur de commerce (décirio)

- Instrace: n vales,$M \in \mathbb{R}_{+}$
- Question : erciste - t-il un tour de longan $\leqslant M$

Algorithms Alegorithine f, instance I

$$
\text { - epact } \forall I, f(I)^{x}=x, \quad c(x) \leq M c\left(x^{*}\right)
$$

Algorithm

Sequence of elementary operations that can be implemented on a computer

Types of algorithms for optimization problems :

- Exact algorithms : compute an optimal solution
- Approximation algorithms : compute a solution with guarantee
- Heuristic algorithms: compute a solution with no guarantee

Algorithms

Algorithm

Sequence of elementary operations that can be implemented on a computer

Types of algorithms for optimization problems :

- Exact algorithms : compute an optimal solution
- Approximation algorithms : compute a solution with guarantee
- Heuristic algorithms: compute a solution with no guarantee
- How to still have guarantees? \rightarrow compute lower bound

Heuristic example : local descent (P): $\left\{\begin{array}{l}\min _{x} c(x) \\ \text { st. } x \in \mathbb{X}\end{array}\right.$
Iterative algorithm: current solution $x_{k} \in \mathcal{X}$

1. Compute solutions in the neighborhood $\mathcal{N}\left(x_{k}\right)$ of x_{k}.
2. Select $x_{k+1} \in \mathcal{N}\left(x_{k}\right)$ such that $c\left(x_{k+1}\right)<c\left(x_{k}\right)$
3. Stop when we cannot improve anymore.

Designing good local search heuristics will be useful in the project.
$c(x)$

Time complexity

Time complexity $f(n)$ of an algorithm : number of elementary operation that must be realized if the input is of size n.

Example

1. Find maximum of n integers? $O(n)$
2. Sorting n integers? $\bigcirc(n \log n)$
3. Multiplication of two matrices of size $n \times n ? \bigcirc(m 3)$

Time complexity

Time complexity $f(n)$ of an algorithm : number of elementary operation that must be realized if the input is of size n.

Example

1. Find maximum of n integers? $\rightarrow \mathcal{O}(n)$
2. Sorting n integers ? $\rightarrow \mathcal{O}(n \log n)$
3. Multiplication of two matrices of size $n \times n ? \rightarrow \mathcal{O}\left(n^{3}\right)$

Time complexity

Time complexity $f(n)$ of an algorithm : number of elementary operation that must be realized if the input is of size n.

Example

1. Find maximum of n integers? $\rightarrow \mathcal{O}(n)$
2. Sorting n integers ? $\rightarrow \mathcal{O}(n \log n)$
3. Multiplication of two matrices of size $n \times n ? \rightarrow \mathcal{O}\left(n^{3}\right)$

"Clean" definition of algorithm, size of input, time complexity

- Requires formalizing what is an algorithm on a computer
- See textbook for more details
- Informal understanding is enough for this lecture

Polynomial vs exponential algorithm

- Polynomial algorithm : time complexity in $\mathcal{O}\left(n^{a}\right)$
- Otherwise : exponential algorithm

Polynomial vs exponential algorithm

- Polynomial algorithm : time complexity in $\mathcal{O}\left(n^{a}\right)$
- Otherwise : exponential algorithm

Time complexity	Size n			
	10	20	50	60
n	$0.01 \mu \mathrm{~s}$	$0.02 \mu \mathrm{~s}$	$0.05 \mu \mathrm{~s}$	$0.06 \mu \mathrm{~s}$
n^{2}	$0.1 \mu \mathrm{~s}$	$0.4 \mu \mathrm{~s}$	$2.5 \mu \mathrm{~s}$	$3.6 \mu \mathrm{~s}$
n^{3}	$1 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	$125 \mu \mathrm{~s}$	$216 \mu \mathrm{~s}$
n^{5}	0.1 ms	3.2 ms	312.5 ms	777.6 ms
2^{n}	$1 \mu \mathrm{~s}$	1 ms	13 days	36.5 years

Table - Comparision of different time complexity functions on a computer executing 1 billion operations per second

A question of computational time?

Let \mathcal{A} be an algorithm solving a problem \mathcal{P} in 2^{n} operations. We have a computer that solved \mathcal{P} with \mathcal{A} in 1 hour for instances of size up to $n=438$.

With a computer 1000 times faster, instances of up to which size can we solve in 1 hour?

$$
2^{10}=1024
$$

A question of computer speed

Complexity function	Present day computer	Computer $100 \times$ faster	Computer $1000 \times$ faster
n	N_{1}	$100 N_{1}$	$1000 N_{1}$
n^{2}	N_{2}	$10 N_{2}$	$31.6 N_{2}$
n^{3}	N_{3}	$4.64 N_{3}$	$10 N_{3}$
n^{5}	N_{4}	$2.5 N_{4}$	$3.98 N_{4}$
2^{n}	N_{5}	$N_{5}+6.64$	$N_{5}+9.97$
3^{n}	N_{6}	$N_{6}+6.29$	$N_{6}+6.29$

Table - Size of the largest instance that can be solved in 1 hour

(1) Problems and algorithms

(2) Graphs
(3) Modeling with Mixed Integer Linear Programs

Graphs

Graph : $G=(V, E)$

- V : set of vertices
- E : set of edges (unordered pairs of vertices)

Paths

Path \rightarrow sequence of nodes connected by edges

- Simple : no edge is crossed twice
- Cycle : no vertex is visited twice
- Elementary : start vertex $=$ end vertex \leftrightarrow
- Eulerian : crosses all edges exactly once
- Hamiltonian : visits all vertices exactly once

Modeling with cycles

Give examples of real-life problems whose solutions are Hamiltonian/Eulerian cycles.

Modeling with cycles

Give examples of real-life problems whose solutions are Hamiltonian/Eulerian cycles.

- Traveling Salesman (Hamiltonian cycle)
- Post office (Eulerian cycle)
Example: Königsberg bridges (1736) - Euler

Is it possible to go through all the bridges without crossing the same bridge twice?

Example: Königsberg bridges (1736) - Euler

Is it possible to go through all the bridges without crossing the same bridge twice?

Decision problem : Eulerian cycle

- Instance. Graph G
- Question. Is G Eulerian?

Example: Königsberg bridges (1736) - Euler

Is it possible to go through all the bridges without crossing the same bridge twice?

Decision problem : Eulerian cycle

- Instance. Graph G
- Question. Is G Eulerian?

Theorem : A graph is Eulerian \Leftrightarrow all its vertices have even degree

Example: Königsberg bridges (1736) - Euler

Is it possible to go through all the bridges without crossing the same bridge twice?
$O(|V|+|E|)$

Decision problem : Eulerian cycle

- Instance. Graph G
- Question. Is G Eulerian?

Theorem : A graph is Eulerian \Leftrightarrow all its vertices have even degree
Algorithmic complexity of testing if an Eulerian cycle exists?

Types of graph

- Simple graph: no duplicate edges and no self loops
- Complete graph: simple graph where every pair of vertices is an edge
- Bipartite graph: vertices partitioned into two subsets, such that there is no edge between two vertices of the same subset

Complete graphs, bipartite graphs

- K_{n} : complete graph with n vertices
\Rightarrow How many edges in K_{n} ? $\quad \frac{n(n-1)}{2}=\binom{n}{2}$
- $K_{m, n}$: bipartite complete graph with m and n vertices - How many edges in $K_{m, n}$?

Complete graphs, bipartite graphs

- K_{n} : complete graph with n vertices
- How many edges in K_{n} ? $\rightarrow \frac{n(n-1)}{2}$
- $K_{m, n}$: bipartite complete graph with m and n vertices
- How many edges in $K_{m, n}$? $\rightarrow m n$

Types of graph

Comnere

- Connected : there is a path between any pair of vertices
- Forest : no cycle
- Tree : connected forest

Coloring problem

- Coloring : $c: V \rightarrow \mathbb{N}$
- Proper coloring : for any edge (\mathbf{u}, v), $c(u) \neq c(v)$
- Chromatic number $\chi(G)$: minimum number of colors in a coloring

Optimisation problem : graph coloring

- Instance. A graph G
- Question. Compute $\chi(G)$

Example of problem that can be modeled with coloring

A set F of formations must be given to employees of a firm. Each employee i must follow a subset F_{i} of formations. The firm wants to find the minimum number of formation time slots it must schedule so that each employee can attend its formations. Model this problem as a coloring problem.

$$
\left\{\begin{array}{l}
V=F \\
E=\left\{(u, v) \mid \exists i v \in F_{i}, v \in F_{i}\right\} \\
i i_{2}: f_{1}, f_{2}, f_{4} \\
f_{2}, f_{3}
\end{array}\right.
$$

Example of problem that can be modeled with coloring

A set F of formations must be given to employees of a firm. Each employee i must follow a subset F_{i} of formations. The firm wants to find the minimum number of formation time slots it must schedule so that each employee can attend its formations. Model this problem as a coloring problem.

- Vertices : formations
- Edges: $\left(f_{i}, f_{j}\right)$ if an employee needs to follow both f_{i} and f_{j}
- Each color $=1$ time slot

Example

Can we color this graph with fewer than five colors?

Clique property

- Clique : complete subgraph
- cardinal of a clique \leq number of colors in a proper coloring
- $\omega(G)$: maximum cardinality of a complete subgraph of G

Theorem. $\omega(G) \leq \chi(G)$

Matching and covers

Couplage

- Matching : set of edges two by two disjoints.

Vertex cover: Set of vertices S such that each edge contains a vertex in S.
couverture

Matching and covers

- $\tau(G)$: minimum cardinality of a cover
- $\nu(G)$: maximum cardinality of a matching

Theorem. $\nu(G) \leq \tau(G)$

Examples

You are the security guard in a bar. You know which pair of clients will fight if they are both admitted. You want to choose a minimum number of clients to exclude from the bar to avoid any fight. counerture minimum.

You want to do the seating plan in such a way that guests who fight are not at the same table. How to minimize the number of tables used? coloration

Examples

You are the security guard in a bar. You know which pair of clients will fight if they are both admitted. You want to choose a minimum number of clients to exclude from the bar to avoid any fight.
\rightarrow Min vertex cover problem
You want to do the seating plan in such a way that guests who fight are not at the same table. How to minimize the number of tables used?

Examples

You are the security guard in a bar. You know which pair of clients will fight if they are both admitted. You want to choose a minimum number of clients to exclude from the bar to avoid any fight.
\rightarrow Min vertex cover problem
You want to do the seating plan in such a way that guests who fight are not at the same table. How to minimize the number of tables used?
\rightarrow Coloring problem

(1) Problems and algorithms

(2) Graphs
(3) Modeling with Mixed Integer Linear Programs

Mixed Integer Linear Programming
Programme linéaice en nombles entiess (PLNE)
Mixed Integer Linear Program

$$
\left\{\begin{aligned}
\min & c^{\top} x=\sum_{i} c_{i} \boldsymbol{x}_{i} \\
\text { s.t. } & A x \leq b \\
& x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}
\end{aligned}\right.
$$

with $c \in \mathbb{R}^{n}$, and $A \in \mathbb{R}^{m \times n}$.
One of the most used framework in Operations Research

- Wide modelling power
- Efficient open source and commercial solvers
\Longrightarrow very useful in the industry

Commereiaure:
Gurobi
CPLEX

$$
1
$$

HIGHS, GCPK

Example : dinner party

Do the seating plan of a party in such a way that

- guests likely to fight are not at the same table
- guests have as many friends as possible at their table Model this problem as a mixed integer linear program.
- Variables de décision:
- Fonction objectif.
- Contraintes:
- n imuités
- T tables, de taille M.
- $\forall i, j \in[m], f_{i j}=1 \mathrm{ri} i, j$ amis (Osimon)
$e_{i j}=1$ si i, j ememis (Osinon)
- $\quad \forall_{i} \in\left\{-\left[-V_{1} \in[T] x_{i+} \in\{0,1\}=\mathbb{1}(i\right.\right.$ sur la table $t)$
- $y_{i j t} \in\{0,1\}=1(i, j$ suas la table $t)$
. Objectif: $\max _{x, y} \sum_{t \in T} \sum_{i, j} f_{i j} y_{i j} t$
- $\sum_{i} x_{i t} \leqslant M_{k} \quad \forall t \in T$
$\forall t, \forall j_{j}$
- $\sum_{i j} e_{i j} y_{i j t}=0 \quad \forall t \mid x_{i t}+x_{j t} \leqslant 1\left(r_{i}^{e_{j}}, 1\right)$
- $\left\{\left.\begin{array}{l}y_{i j t} \leq x_{i} t \\ y_{i j t} \leq x_{j t}\end{array} \right\rvert\,\right.$ on $2 y_{i j t} \leq x_{i t}+x_{j t}$

Input instance:

- Guests $i \in \llbracket 1, G \rrbracket$, tables $t \in \llbracket 1, T \rrbracket$
- $e_{i j}=\mathbb{1}(i$ will fight $j)$
- $f_{i j}=\mathbb{1}(i$ and j are friends $)$

Input instance :

- Guests $i \in \llbracket 1, G \rrbracket$, tables $t \in \llbracket 1, T \rrbracket$
- $e_{i j}=\mathbb{1}(i$ will fight $j)$
- $f_{i j}=\mathbb{1}(i$ and j are friends $)$

Decision variables :

- $x_{i t}$ equals 1 if i affected to table $t, 0$ otherwise
- $y_{i j t}$ equals 1 if both i and j affected to $t, 0$ otherwise

Input instance:

- Guests $i \in \llbracket 1, G \rrbracket$, tables $t \in \llbracket 1, T \rrbracket$
- $e_{i j}=\mathbb{1}(i$ will fight $j)$
- $f_{i j}=\mathbb{1}(i$ and j are friends $)$

Decision variables:

- $x_{i t}$ equals 1 if i affected to table $t, 0$ otherwise
$>y_{i j t}$ equals 1 if both i and j affected to $t, 0$ otherwise

$$
\max \sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{t=1}^{T} f_{i j} y_{i j t}
$$

$$
\text { s.t. } \quad \sum_{t=1}^{T} x_{i t}=1
$$

$$
\forall i
$$

$$
\begin{array}{ll}
x_{i t}+x_{j t} \leq 2-e_{i j}, & \forall i, j, t \\
y_{i j t} \leq x_{i t}, y_{i j t} \leq x_{j t} & \forall i, j, t \\
x_{i t} \in\{0,1\}, y_{i j t} \in\{0,1\}, & \forall i, j, t
\end{array}
$$

