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» Input/instance
> Question

Two types of problems :
> Decision problems : the answer to the question is Yes or No

> Optimization problems :
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Algorithm

Sequence of elementary operations that can be implemented on a
computer

Types of algorithms for optimization problems :
> Exact algorithms : compute an optimal solution

> Approximation algorithms : compute a solution with guarantee
> Heuristic algorithms : compute a solution with no guarantee
cx) » How to still have guarantees?
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Algorithms

Algorithm

Sequence of elementary operations that can be implemented on a
computer

Types of algorithms for optimization problems :
> Exact algorithms : compute an optimal solution

> Approximation algorithms : compute a solution with guarantee
> Heuristic algorithms : compute a solution with no guarantee
» How to still have guarantees? — compute lower bound
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Iterative algorithm : current solution z € X
Compute solutions in the neighborhood of zy,.
Select xg11 € N (1) such that e(xgiq) < c(zk)
Stop when we cannot improve anymore.

Designing good local search heuristics will be useful in the project.




Problems and algorithms

Time complexity

Time complexity f(n) of an algorithm : number of elementary
operation that must be realized if the input is of size n.

1. Find maximum of n integers? O <"“!

2. Sorting n integers? O (m oog/m)

3. Multiplication of two matrices of size n x 7.7 (3(m 3)
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Problems and algorithms

Time complexity

Time complexity f(n) of an algorithm : number of elementary
operation that must be realized if the input is of size n.

1. Find maximum of n integers? — O(n)

2. Sorting n integers ? — O(nlogn)

3. Multiplication of two matrices of size n x n? — O(n?)

"Clean" definition of algorithm, size of input, time complexity
» Requires formalizing what is an algorithm on a computer
> See textbook for more details

» Informal understanding is enough for this lecture
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Problems and algorithms

Polynomial vs exponential algorithm

» Polynomial algorithm : time complexity in O(n®)

» Otherwise : exponential algorithm

6/27



Polynomial algorithm : time complexity in O(n®)

Otherwise : exponential algorithm

Time complexity Size n
10 20 50 60
n 0.0lus | 0.02us | 0.05pus 0.06 pus
n? 0.1ps | 0.4pus | 2.5us 3.6 us
n> 1pus 8 s 125 us 216 s
n’ 0.1ms | 32ms | 3125 ms | 777.6 ms
2" 1pus 1 ms 13 days | 36.5 years

Comparision of different time complexity functions on a computer executing 1
billion operations per second



Let A be an algorithm solving a problem P in 2™ operations. We
have a computer that solved P with A in 1 hour for instances of size
up to n = 438.

With a computer 1000 times faster, instances of up to which size
can we solve in 1 hour?

4
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Complexity | Present day | Computer Computer
function computer | 100x faster | 1000x faster

n Ny 100V, 1000V,
n? Ny 10NV, 31.6No
n? N 4.64N3 10N3
n° Ny 2.5N, 3.98N,
2m N5 N5 + 6.64 N5 +9.97
3" Ng Ng + 6.29 Ng + 6.29

Size of the largest instance that can be solved in 1 hour
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Graph : G = (V,E)
V' : set of vertices
E : set of edges (unordered pairs of vertices)




Path> sequence of nodes connected by edges
Simple : no edge is crossed twice
Cycle : no vertex is visited twice e
Elementary : start vertex = end vertex &

Eulerian : crosses all edges exactly once

Hamiltonian : visits all vertices exaetly once
‘¥_,
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Modeling with cycles

Give examples of real-life problems whose solutions are
Hamiltonian/Eulerian cycles.
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Modeling with cycles

Give examples of real-life problems whose solutions are
Hamiltonian/Eulerian cycles.

» Traveling Salesman (Hamiltonian cycle)

> Post office (Eulerian cycle)
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Example : Konigsberg bridges (1736) - Euler

Is it possible to go through all the
bridges without crossing the same
bridge twice ?
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Example : Konigsberg bridges (1736) - Euler

Is it possible to go through all the
bridges without crossing the same
bridge twice ?

Decision problem : Eulerian cycle

> Instance. Graph G
» Question. Is G Eulerian?
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Example : Konigsberg bridges (1736) - Euler

Is it possible to go through all the
bridges without crossing the same
bridge twice ?

Decision problem : Eulerian cycle

> Instance. Graph G
» Question. Is G Eulerian?

Theorem : A graph is Eulerian < all its vertices have even degree J
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Example : Konigsberg bridges (1736) - Euler

Is it possible to go through all the
bridges without crossing the same
bridge twice ?

ol lv| + (B )
Decision problem : Eulerian cycle

> Instance. Graph G
» Question. Is G Eulerian?

Theorem : A graph is Eulerian < all its vertices have even degree J

Algorithmic complexity of testing if an Eulerian cycle exists ? 13/27
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Simple graph : no duplicate edges and no self loops
Complete graph : simple graph where every pair of vertices is

an edge
Bipartite graph : vertices partitioned into two subsets, such
that there is no edge between two vertices of the same subset
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K, : complete graph with n vertices ( 4) "
How many edges in K, 7 = 2
K, : bipartite complete graph with m and n vertices

How many edges in Kinn?  prn an



Graphs
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Complete graphs, bipartite graphs

» K, : complete graph with n vertices
» How many edges in K, 7 — %
» K, p : bipartite complete graph with m and n vertices

» How many edges in K, , 7 — mn
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Connected : there is a path between any pair of vertices
Forest : no cycle
Tree : connected forest
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Graphs
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Coloring problem

» Coloring : c: V —» N

> Proper coloring : for any edge (u, v), c(u) # ¢(v)

» Chromatic number x(G) : minimum number of colors in a
coloring

Optimisation problem : graph coloring

> Instance. A graph G
» Question. Compute x(G)

(2>
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A set F' of formations must be given to employees of a firm. Each
employee ¢ must follow a subset F; of formations. The firm wants to
find the minimum number of formation time slots it must schedule
so that each employee can attend its formations. Model this problem
as a coloring problem.



A set F' of formations must be given to employees of a firm. Each
employee ¢ must follow a subset F; of formations. The firm wants to
find the minimum number of formation time slots it must schedule
so that each employee can attend its formations. Model this problem
as a coloring problem.

Vertices : formations

Edges : (fi, fj) if an employee needs to follow both f; and f;
Each color = 1 time slot



lor this graph with fewer than five colors?

Can we co



Clique : complete subgraph
cardinal of a clique < number of colors in a proper coloring

w(@) : maximum cardinality of a complete subgraph of G

Theorem. w(G) < x(G)




Copd

Matching : set of edges two by two disjoints.

Vertex cover : Set of vertices S such that each edge contains

Z//a vertex in S.
W




Graphs
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Matching and covers

» 7(G) : minimum cardinality of a cover

» v(G) : maximum cardinality of a matching

Theorem. v(G) < T(G,) J
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You are the security guard in a bar. You know which pair of clients
will fight if they are both admitted. You want to choose a minimum
number of clients to exclude from the bar to avoid any fight.

/Mn;m-—u—”. .

You want to do the seating plan in such a way that guests who fight

are not at the same table. How to minimize the number of tables
used? CQQO,\%L.O'h



You are the security guard in a bar. You know which pair of clients
will fight if they are both admitted. You want to choose a minimum
number of clients to exclude from the bar to avoid any fight.

— Min vertex cover problem

You want to do the seating plan in such a way that guests who fight
are not at the same table. How to minimize the number of tables
used ?



You are the security guard in a bar. You know which pair of clients
will fight if they are both admitted. You want to choose a minimum
number of clients to exclude from the bar to avoid any fight.

— Min vertex cover problem

You want to do the seating plan in such a way that guests who fight

are not at the same table. How to minimize the number of tables
used ?

— Coloring problem
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Mixed Integer Linear Program

T = ; < ox,

min
st. Az <b
x €ZP x RVP
P

with ¢ € R”, and A € R™*",
One of the most used framework in Operations Research

Wide modelling power
Efficient open source and commercial solvers ot losn -
. . G«HQL_"'
— very useful in the industry
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Do the seating plan of a party in such a way that
guests likely to fight are not at the same table
guests have as many friends as possible at their table

Model this problem as a mixed integer linear program.
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Input instance :
Guests i € [1,G], tables ¢t € [1,T]]
eij = 1(4 will fight j)
fij = 1(i and j are friends)



Input instance :
Guests i € [1,G], tables ¢t € [1,T]]
eij = 1(4 will fight j)
fij = 1(i and j are friends)
Decision variables :
xi equals 1 if 7 affected to table ¢, 0 otherwise

yij¢ equals 1 if both ¢ and j affected to ¢, 0 otherwise



Input instance :
Guests i € [1,G], tables ¢t € [1,T]]
eij = 1(4 will fight j)
fij = 1(i and j are friends)
Decision variables :
xi equals 1 if 7 affected to table ¢, 0 otherwise
yij¢ equals 1 if both ¢ and j affected to ¢, 0 otherwise

n n T
max Z Z Zfijyijt

i=1 j=i+1 t=1

T
s.t. Zl‘it = ].7 Vi
=1
Tit + Tt < 2 — e, Vi gl
Yijt < Tit, Yijt < Tjt Vi, j,t

Tit € {07 1}7 Yijt € {07 1}7 Vi, j,t
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