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© Stochastic Vehicle Scheduling

© Dynamic Vehicle Routing Problem with Time Windows
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Learning to solve hard combinatorial problems

We consider a hard combinatorial problem

H): min c
(H) in (y)

> z: input instance

» ): finite combinatorial constraints set
> c¢: Y — R: objective function
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Learning to solve hard combinatorial problems

We consider a hard combinatorial problem

H): min c
(H) in (y)

> z: input instance
» ): finite combinatorial constraints set
> c¢: Y — R: objective function

Usual multiclass classification end-to-end learning

| n 0)
BN [ML predictor apwj _outeat
v yelo,1]!

Problem: too many classes!
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Machine Learning with combinatorial layers

We want to use a Combinatorial Optimization (CO) oracle

where ) is a finite set, inside the pipeline

Instance

f:0+— argmax0'y

[M L predictor gow]

yey

Objective

= puw()

CO oracle f

Solution

y = f(6)
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Flat derivatives everywhere

f:0— argmaxf'y
yey

When we apply Automatic Differentiation (AD) to a CO oracle:

» It usually doesn't work (lack of compatibility with solver)
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Flat derivatives everywhere

f:0— argmaxf'y
yey

When we apply Automatic Differentiation (AD) to a CO oracle:
» It usually doesn't work (lack of compatibility with solver)

» Even when it does, the Jacobian is either zero or undefined
(because f is piecewise constant on ))
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Regularized CO oracle

We replace our CO oracle

f:0— argmaxf'y

yey

by using a probability distribution p(-|¢) on

New pipeline:

Instance

[M L predictor cpwj

Objective 6
_—

Probabilistic
CO layer f

Solution y
_—
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Building the distribution

F:0—EyplY] =" ypylo)
yey

We want a distribution p(-|@) such that:
» 0 — p(:|0) is differentiable
> J?approximates f

> Computing f is easy (only requires the oracle f for example)
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Additive perturbation

Perturb the objective with an additive noise [Berthet et al., 2020]:

fri0—E |argmax(§ +£2)y

yeyY

=E[f(0+cZ)]

with Z ~ N(0,1), and € € R..

Intractable expectation = Monte-Carlo sampling approximation
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Other distributions

» Multiplicative perturbations
» Convex regularization
> ...

see our paper [Dalle et al., 2022]
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Learn by imitation or by experience ?

Instance [ ML predictor Objective 0 ProbabilistiE Solution y
x Ow CO layer f
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Learn by imitation or by experience ?

Instance [ ML predictor Objective 0 ProbabilistiE Solution y
x Ow CO layer f

1. Learning by

> Instance/solutions pairs: D = {(z!,7),..., (z",¥™)}
» Goal: imitate target solutions i
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Learn by imitation or by experience ?

Instance [ ML predictor Objective 0 ProbabilistiE Solution y
x Ow CO layer f

1. Learning by

> Instance/solutions pairs: D = {(z!,7),..., (z",¥™)}
» Goal: imitate target solutions i
2. Learning by
> Instances only: D = {z!, ..., 2"}
» Goal: minimize c(y)
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Loss functions

Instance [ ML predictor Objective 0 ProbabilistiE Solution y
x Ow CO layer f

1. Learning by

£FY(0.7) = E [r;eagw T ezfy} 0Ty

J-(0) =7 € 0pLEY(6.7)
2. Learning by

L5(0) = Epj9)[c(Y)]

10/25



Structured learning
000000000 e

How to implement these pipelines 7

Our package InferOpt.jl [Dalle et al., 2022], written in Julia:
» Open source: https://github.com/axelparmentier/InferOpt.jl
> Easy to use
» Works with any CO oracle, independent of the implementation

» Compatible with Julia ML and AD ecosystem (through
ChainRules. jl)
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@ Stochastic Vehicle Scheduling
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(Deterministic) Vehicle Scheduling Problem (VSP)

» Set of tasks v to
complete

50
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(Deterministic) Vehicle Scheduling Problem (VSP)

» Set of tasks v to
complete

» Objective: build 2
routes to minimize
total distance cost

20
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(Deterministic) Vehicle Scheduling Problem (VSP)

TAQ

. . . : kY oSA o4
» Objective: build FEEY @
to minimize o m ‘
total distance cost i @ 1
» Easy problem i . 2 2 ‘-.b
= flow formulation, LN . 2
linear program 0 g\ V2 fee i WU P d

0, 2
> Set of v to @ """ @
complete _ NG N
z
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(Deterministic) Vehicle Scheduling Problem (VSP)

» Set of v to @
complete
» Objective: build vs

to minimize
total distance cost

v3 U8
» Easy problem
= flow formulation,
linear program o P "2 @ d

time
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Stochastic Vehicle Scheduling (StoVSP)

> After routes are scheduled, we observe random
= delay propagation along vehicle routes

> set of sesS
> %
> slack: A3,

» delay prop’agation along (u,v):

d; =75 + max(d] — A; ,0)

U,

propagated delay
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Stochastic Vehicle Scheduling (StoVSP)

> After routes are scheduled, we observe random
= delay propagation along vehicle routes

> set of sesS
> %
> slack: A3,

» delay prop;agation along (u,v):

d; =75 + max(d] — A; ,0)

U,

propagated delay

» Objective: minimize vehicle costs and expected delay costs.
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Stochastic Vehicle Scheduling (StoVSP)

> After routes are scheduled, we observe random
= delay propagation along vehicle routes

> set of sesS
> %
> slack: A3,

» delay prop;agation along (u,v):

d; =75 4+ max(d] — A7, 0)

U,

propagated delay

» Objective: minimize vehicle costs and expected delay costs.
» More difficult to solve, two OR options

1. Quadratic constraints = linearize with Mc Cormick
2. Column generation with constrained shortest path subproblem

= does not scale on large instances
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Learning pipeline

> 0= pyu(z).
> 0, = w' ¢(x,a), with ¢(x,a) feature vector.

¥ ©
Jol ©
o ol ————————— B IO—O1]

time —— time time

StoVSP GLM)  Edge weights VSP flow | _ Vehicle routes
instance Pw 04, Va € A Linear Program
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Learning pipeline

> 0= pyu(z).
> 0, = w' ¢(x,a), with ¢(x,a) feature vector.
ORPNG C ®

o) OO
o Pl 60

time time time

Z

StoVSP GLM)  Edge weights VSP flow | _ Vehicle routes
instance Pw 0,, Ya € A Linear Program

Training datasets (50 instances each):
> 25 tasks and 10 scenarios = label with optimal solution
» 50 tasks and 50 scenarios = label with heuristic solution

» 100 tasks and 50 scenarios = label with heuristic solution 15/25
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Learning by imitation: gap to target solution

Test dataset

Train dataset 25 tasks 50 tasks 100 tasks

mean max mean max mean max

25 tasks 0.68% 9.46% —0.41% 4.26% —1.02% 2.4%

50 tasks 0.49% 3.01% —0.46% 2.34% —-1.6% 0.62%

100 tasks 0.62% 3.36% —0.14% 9.9% -12% 0.11%

= good imitation
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Learning by imitation: average cost per task

Test dataset (number of tasks in each instance)
25 50 100 200 300 500 750 1000

25 tasks 274.72 22529 207.14 194.46 186.68 18256 178.57 177.3
50 tasks 274.27 22523 20597 195.78 193.12 194.48 196.99 199.38
100 tasks 274.61 22587 206.8 197.97 19553 207.02 219.34 227.14

Train dataset

= good imitation
= poor generalization on large instances when imitating
non-optimal solutions
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Learning by experience: gap to target solution

Test dataset
Train dataset 25 tasks 50 tasks 100 tasks
mean max mean max mean max

25 tasks 0.45% 4.2% —0.77% 0.63% -2.11% -0.14%
50 tasks 0.43% 3.04% —0.78% 0.74% —-2.06% —0.22%
100 tasks 0.43% 3.28% —0.83% 0.97% —2.06% —0.29%

= better gaps, and lower variance
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Learning by experience: average cost per task

Train dataset Test dataset (number of tasks in each instance)

25 50 100 200 300 500 750 1000

25 tasks 27419 22455 2049 191.86 184.71 181.29 178.0 177.02

50 tasks 27412 22451 2050 191.85 184.3 180.48 176.96 176.0

100 tasks 27413 22441 205.0 191.85 184.63 181.08 177.81 176.74

= better gaps, and lower variance
= better generalization

See https://github.com/BatyLeo/StochasticVehicleScheduling.j1 for
reproducible experiments.
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© Dynamic Vehicle Routing Problem with Time Windows
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Static Vehicle Routing Problem with Time Windows

» Set of to serve: location, time window, demand,
service time

» Distance matrix d,
» Objective: serve all requests, minimize total travel distance
» State-of-the-art: Hybrid Genetic Search [Vidal, 2021]

O
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Static Vehicle Routing Problem with Time Windows

» Set of to serve: location, time window, demand,
service time

» Distance matrix d,
» Objective: serve all requests, minimize total travel distance
» State-of-the-art: Hybrid Genetic Search [Vidal, 2021]
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Dynamic VRPTW

» Time horizon {1,...,T}, 1-hour
» Requests are not known in advance (only their probability)

> At every epoch t:

» Decide which request to

» Build routes serving them, other requests are

» Each request must be served before end of its time window
= some requests must be dispatched

> x¢ of the system at epoch ¢: set of requests arrived at ¢
or arrived before but not yet served

» Objective: serve all requests, minimize total travel distance

= no state-of-the-art
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Example: start of epoch 1/2
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Example: epoch 1 routes
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Example: end of epoch 1
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Example: start of epoch 2, new requests arrive
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Example: epoch 2 routes
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CO layer: Prize Collecting VRPTW

> Serving requests is optional
> Serving request v gives 0,

» Objective: maximize total profit minus costs

max Z (91; - du,v)yu,v-

yey(er) (u,0)€x?

» Algorithm: Prize Collecting Hybrid Genetic Search
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Policy based on a Deep Learning pipeline

O 2 @
O
o 5
10 O 7
O O o o
e =y
~1
O @) ®

State Neural Network)| Requests prizes | Prize Collecting || Epoch routes
Ty Puw 0,, Vv € x4 VRPTW f Yt

= we learn to imitate an anticipative policy
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Results: 4.4% average gap

Benchmark on 2252 instances-seed combinations:

120%
100%

80%

60%
ST
R — =

anticipative our policy dqgn greedy supervised random lazy
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Qualifications Winner team of Euro-NeurlPS competition!

Rank Date Team Static cost Dynamic cost  Avg. cost Static Dynamic Avg.
Rank Rank rank
| 1 10/30/22  Kléopatra 180639.6 333490.8 2570652e+05 = 5.0 1.0 3.0
2 10/30/22  OptiML 180639.1 3393314 2.599852e+05 = 4.0 20 3.0
3 10/30/22  HowToRoute 180565.4 3491154 2.648404e+05 2.0 6.0 40
4 10/31/22  Team_SB 180686.6 341169.1 2.609278e+05 = 9.0 30 6.0
5 10/29/22 ~ ORberto Hood and the = 180677.0 346094.9 2633860e+05 8.0 4.0 6.0
Barrymen
6 10/30/22  UPB 180670.8 3493422 2650065e+05 7.0 7.0 70
7 10/31/22  Miles To Go Before We 180562.9 352776.8 2.666698e+05 1.0 13.0 7.0
Sleep
8 10/31/22  Kirchhoffslaw 180575.1 3534435 2.670093e+05 = 3.0 15.0 9.0
9 10/20/22  dynamo 180728.3 350960.3 2.658443e+05  12.0 80 10.0
10 10/26/22 = HustSmart 180799.3 346982.7 2.638910e+05 = 16.0 50 105
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