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Dynamic VRPTW

A solution of this problem is a stationary policy:

T X =)

Tt = Yt

Objective: find 7*, serving all customers before end of horizon, and minimizing total
cost

7 = argmin E Z total cost of routes in decision y; = m(zy)

4 epochs t
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Winner team of the EURO-NeurlPS challenge

» Euro-NeurlPS competition!

» 100 entering customers at each time step
P> maximum 2 minutes per time step

» Our team won first prize of the challenge

» Policy m,, Machine Learning (ML) and Combinatorial Optimization (CO) pipeline

State
—

rre€X

Neural Network) Objective
—
Pw O0=puw (xt)

CO algorithm

argmax 6 'y
yeY

"https://euro-neurips-vrp-2022.challenges.ortec.com/
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Policy based on a Deep Learning pipeline

Epoch decisions can be seen as the solution of a Prize
Collecting VRPTW:

» Serving customers is optional
» Serving customer v gives 0,

» Objective: maximize total profit minus routes costs

max Z Gvyu@ Z Cu,oYu,v -

yey(:pt
v)Ex? (u,v)€x?

total profit total routes cost

» Algorithm: Prize Collecting Hybrid Genetic Search
= Combinatorial Optimization layer f

O
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Policy based on a Deep Learning pipeline

Difficulty: no natural way of computing meaningful prizes
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Policy based on a Deep Learning pipeline

Solution: use a neural network to predict request prizes 6 = ¢y, ()

O 2 O
@)
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10 @) 7
O O O O
O O 5o
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O O O

State Neural Network) Customers prizes | Prize Collecting Decision
Tt Pw 0., Vv € 4 HGS f Yt

Parameterized policy: 7y, : 2t — f(pw(xt))
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Learning problem

Goal: find parameters w such that our pipeline is a “good” policy.

O 2 O
O
O 5
10 O 7
O O s
O -1 O
O @) O
State Neural Network) Customers prizes | Prize Collecting Decision
Tt Puw 0y, YU € 1 HGS f Yt

- 1 iy i
@ = argmin ;E(%(w ),77")
We need to build a labeled dataset D = {(z!, 7'),

- (@)}
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Learn to imitate anticipative decisions
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Learn to imitate anticipative decisions

» Full instance with all future customers

» Release times:
>
>

> t=3
» Hybrid Genetic Search [Vidal, 2021]
» Anticipative lower bound

6/13



Training the policy
00e000

Learn to imitate anticipative decisions

We rebuild the anticipative decisions a posteriori
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A natural loss function

(x,y) € D, 0 = py(x)

f:0+— argmax ' g(y) + h(y)
yeY(z)

with g(y)z(zyu,v> nd ) == 3wt
veET u

uer

Non-optimality of target routes 4 as a solution of f

L(0,y) = r;lea;{HTg(y) +h(y)} = (0T9(7) + 1(y))
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A natural loss function

Non-optimality of target routes i as a solution of f

L(0,7) = I;leaf{HTg(y) +h(y)}— (0T 9@ + h(y))

\ .
0.
0.

— conv(g(¥)
5 B oU0) (- o) here)
0
0.0 0.5 1.0 15
]

0 € R2 L(0,7)
= Non smooth + degeneracy 7/13

9
8

S
&

I
3

N
&




Training the policy
0000e0

Building a differentiable loss

Theorem [Berthet et al., 2020, Baty et al., 2023]

The perturbed loss function

L:(0,y) =E [ma

«(8+<2)Tgly) + h<y>] (07 g(@) + (@)
yey

with e € Ry, and Z ~ N(0, 1), is convex and differentiable in 6

yeY
= E[g(f(0+22))] - 9(®)

VoL:(0,7) =E [g (argmaX(9 +eZ)Tg(y) + h(zz))] —9(9)
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0— L(6,7)

P

00— L.(0,7)
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Our team Kléopatra wins the Euro-NeurlPS competition

Team name

Dynamic cost

Improvement over 9th team

Kléopatra
Team_SB
OptiML
HustSmart
ORberto Hood and the Barrymen
UPB
Miles To Go Before We Sleep
HowToRoute
Kirchhoffslaw

348831.56
358161.36
359270.09
361803.57
362481.13
367007.49
369098.13
369797.03
370670.53

5.9%
3.3%
3.1%
2.4%
2.2%
1%
0.4%
0.2%
0%

Results
0e00
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Comparison to baseline policies

sl

lazy random greedy rolling-horizon monte-carlo Kléopatra anticipative
lower-bound

Policy ‘Kléopatra Rolling-horizon  Monte-Carlo
Runtime | 90s 600s 5400s

Table: Runtime for each time step
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Conclusion

Contributions:
» Deep Learning pipeline for the Dynamic VRPTW

» Generalization of the learning approach
> Julia open source implementation in InferOpt.j1? [Dalle et al., 2022]

Perspectives:

» There is still room for improvement, especially on the policy to imitate

*https://github.com/axelparmentier/InferOpt.j1 12/13
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More theory
[ ]

Let z € X, 7€ Y(x). Let C(5) = {8 € R¥®: 0T g(5) > 0T g(y), Yy € Y(x)} the
normal cone associated to 7.

1. 0 — L(0,7) is piecewise linear and convex, with subgradient
9(f(9)) — 9() € 0L(0, 7).

2. 0— L.(0,7) is C> and convex with gradient
VoLe(0,9) = E[g(f(0 +c2))] — 9(3).

3. L(0,y) > L(6,7).

4. C(y) is the recession cone of P(y).

5. Let 6 € R¥®)_ If 5y is in C(7)\{0}, then X\ — L( + An, ) is non increasing. If in
addition C(7) # R¥®), then X\ — L£.(0 + A\n, %) is decreasing.
6. Let § € R%®)_If  is in the interior C(7) of C(7), then
)\lim L(O+ \n,g) = /\lim L:(0+ Mn,y) =0.
—00 —00
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Features

Observed

Features
°

Distribution knowledge

x coordinate

y coordinate

demand

service time

time window start

time window end

time from depot to request
relative time depot to request
time window start / rem. time
time window end / rem. time
is must dispatch

Ly

Yr

qr

Sp

b

Uy

td,r

td,r/ur - 57‘)
lr/(Tmaw - Te)
ur/(Tmaz - Te)
1Tg+A+td_r > U

Quantiles from distribution of travel time to all locations:
1% quantile  Pr(X < z] <0.01,X ~ t,.

5% quantile  Pr[X < z] <0.05,X ~t,.

10% quantile Pr(X < z] <0.1,X ~ ¢,

50% quantile Pr[X <] <0.5,X ~t,.

Quantiles from distribution of slack time to all time windows:
0% quantile  Pr(X <z] <0,X ~u, — (I, + s + tr.)
1% quantile  Pr(X < z] <0.01,X ~u. — (I, + s, + ;)
5% quantile  Pr(X <z] <0.05,X ~u, — (I, + s, + tr.)
10% quantile Pr(X < z] <0.1,X ~wu, — (I, + sy + t,.)
50% quantile Pr(X <z] <0.5,X ~u. — (I + s, + ;)
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Predictors

Relative difference
to oracle solution

- *
Linear Graph Neural Graph Neural Neural Network
Network (sparse) Network

16/13



Other results
oe

Other experiments

Num. of training instances
1 2 5 10 15 20 25 30

9.29% 6.64% 5.95% 4.56% 3.79% 4.48% 3.91% 3.84%

Size of training instances
10 25 50 75 100

8.06% 5.78% 4.00% 5.06% 10.39%

Imitated upper-bound strategies
best seed 60 min 15 min 5 min

6.68% 597% 4.79% 3.49%
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Static VRPTW
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Vehicle Routing Problem with Time Windows (VRPTW)

. vehicles capacity Q@

veV

Request 3
O
Request 2
Request 1 (O  Request 6
O O
Depot
[]

O
O Request 5

Request 4

18/13



More theory Features Other results Static VRPTW
o] [e] 00 [ Je]

Vehicle Routing Problem with Time Windows (VRPTW)

(0.75,2.5)
Depot: vehicles capacity @ O
Requests v € V (—0.6,1.5)
1. Coordinates p (=2.0,1) O (1,1)
= COStS ¢y O O
(0,0)
[
O
O (1a _05)
(—=1.0,—1.0)
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Vehicle Routing Problem with Time Windows (VRPTW)

10, 15]
Depot: vehicles capacity @ O
Requests v e V [0, 15]
1. Coordinates p [5, 8] O [2,4]
= COStS ¢y O O
2. Time Windows [¢, u]
[
O
O [0, 5]
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Vehicle Routing Problem with Time Windows (VRPTW)

3
Depot: vehicles capacity @ O
Requests v € V 4
1. Coordinates p 2 O 5
= COStS ¢y O O
2. Time Windows [¢, u] ]
3. Demand ¢ O
O 3
1

18/13



More theory Features Other results Static VRPTW
o] [e] 00 [ Je]

Vehicle Routing Problem with Time Windows (VRPTW)

Depot: vehicles capacity @ Cl)
Requests v € V 1
1. Coordinates p 1 O 1
= COStS ¢y O O
2. Time Windows [¢, u]
3. Demand ¢ [ O
4. Service time s O 1
1
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Static VRPTW
0

Vehicle Routing Problem with Time Windows (VRPTW)

. vehicles capacity @

veV

1. Coordinates p
= COStS ;4

. Time Windows [, u]
Demand ¢

& W oN

. Service time s

. build feasible routes serving all requests at minimum cost
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Static VRPTW
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State-of-the-art algorithm: Hybrid Genetic Search (HGS)

» Genetic algorithm
» Maintains a population of solutions

» Improves it over the iterations using crossover combined with neighborhood
searches

See [Vidal, 2021] for details.
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