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Dynamic Vehicle Routing Problem with Time Windows (Dynamic VRPTW)

xt+1 = F (xt, yt)t = 1 t = 2 t = 3

State
xt ∈ X

set of customers

Decision
yt ∈ Y(xt)

set of routes

x1

y1
1/13



Introduction Policy encoded as a Deep Learning pipeline Training the policy Results

Dynamic Vehicle Routing Problem with Time Windows (Dynamic VRPTW)

xt+1 = F (xt, yt)t = 1 t = 2 t = 3

State
xt ∈ X

set of customers

Decision
yt ∈ Y(xt)

set of routes

x1 x2

y1 y2
1/13



Introduction Policy encoded as a Deep Learning pipeline Training the policy Results

Dynamic Vehicle Routing Problem with Time Windows (Dynamic VRPTW)

xt+1 = F (xt, yt)t = 1 t = 2 t = 3

State
xt ∈ X

set of customers

Decision
yt ∈ Y(xt)

set of routes

x1 x2 x3

y1 y2 y3
1/13



Introduction Policy encoded as a Deep Learning pipeline Training the policy Results

Dynamic VRPTW

A solution of this problem is a stationary policy:

π : X → Y
xt 7→ yt

Objective: find π⋆, serving all customers before end of horizon, and minimizing total
cost

π⋆ = argmin
π

E

 ∑
epochs t

total cost of routes in decision yt = π(xt)
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Winner team of the EURO-NeurIPS challenge

▶ Euro-NeurIPS competition1

▶ 100 entering customers at each time step
▶ maximum 2 minutes per time step

▶ Our team won first prize of the challenge
▶ Policy πw, Machine Learning (ML) and Combinatorial Optimization (CO) pipeline

State−−−→
xt∈X

�
�

�
Neural Network

φw

Objective−−−−−−→
θ=φw(xt)

CO algorithm
argmax

y∈Y
θ⊤y

Decision−−−−−→
yt∈Y

1https://euro-neurips-vrp-2022.challenges.ortec.com/ 3/13
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Policy based on a Deep Learning pipeline
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Parameterized policy: πw : xt 7−→ f(φw(xt))
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Policy based on a Deep Learning pipeline

Epoch decisions can be seen as the solution of a Prize
Collecting VRPTW:
▶ Serving customers is optional
▶ Serving customer v gives prize θv

▶ Objective: maximize total profit minus routes costs

max
y∈Y(xt)

∑
(u,v)∈x2

t

θvyu,v

︸ ︷︷ ︸
total profit

−
∑

(u,v)∈x2
t

cu,vyu,v

︸ ︷︷ ︸
total routes cost

.

▶ Algorithm: Prize Collecting Hybrid Genetic Search

⇒ Combinatorial Optimization layer f
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Policy based on a Deep Learning pipeline

Difficulty: no natural way of computing meaningful prizes
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Policy based on a Deep Learning pipeline

Solution: use a neural network to predict request prizes θ = φw(xt)
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Learning problem

Goal: find parameters w such that our pipeline is a “good” policy.

�
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Neural Network
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Prize Collecting
HGS f

State
xt
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ŵ = argmin
w

1

n

n∑
i=1

L(φw(x
i), ȳi)

We need to build a labeled dataset D = {(x1, ȳ1), . . . , (xn, ȳn)}.
5/13



Introduction Policy encoded as a Deep Learning pipeline Training the policy Results

Learn to imitate anticipative decisions

▶ Full instance with all future customers
▶ Release times:

▶ t = 1
▶ t = 2
▶ t = 3

▶ Hybrid Genetic Search [Vidal, 2021]
▶ Anticipative lower bound
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Learn to imitate anticipative decisions

We rebuild the anticipative decisions a posteriori

i 1 2 3

xi

ȳi
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A natural loss function

(x, ȳ) ∈ D, θ = φw(x)

f : θ 7−→ argmax
y∈Y(x)

θ⊤g(y) + h(y)

with g(y) =

(∑
u∈x

yu,v

)
v∈x

and h(y) = − ∑
(u,v)∈x2

cu,vyu,v

Non-optimality of target routes ȳ as a solution of f

L(θ, ȳ) = max
y∈Y

{θ⊤g(y) + h(y)} − (θ⊤g(ȳ) + h(ȳ))
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A natural loss function

Non-optimality of target routes ȳ as a solution of f

L(θ, ȳ) = max
y∈Y

{θ⊤g(y) + h(y)} − (θ⊤g(ȳ) + h(ȳ))

θ ∈ R2 7→ L(θ, ȳ)
⇒ Non smooth + degeneracy 7/13
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Building a differentiable loss

Theorem [Berthet et al., 2020, Baty et al., 2023]

The perturbed loss function

Lε(θ, ȳ) = E

[
max
y∈Y

(θ + εZ)⊤g(y) + h(y)

]
− (θ⊤g(ȳ) + h(ȳ))

with ε ∈ R+, and Z ∼ N (0, Id), is convex and differentiable in θ

∇θLε(θ, ȳ) = E

[
g

(
argmax

y∈Y
(θ + εZ)⊤g(y) + h(y)

)]
− g(ȳ)

= E[g(f(θ + εZ))]− g(ȳ)
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θ 7→ L(θ, ȳ)

θ 7→ Lε(θ, ȳ)
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Our team Kléopatra wins the Euro-NeurIPS competition

Team name Dynamic cost Improvement over 9th team

Kléopatra 348831.56 5.9%
Team_SB 358161.36 3.3%
OptiML 359270.09 3.1%

HustSmart 361803.57 2.4%
ORberto Hood and the Barrymen 362481.13 2.2%

UPB 367007.49 1%
Miles To Go Before We Sleep 369098.13 0.4%

HowToRoute 369797.03 0.2%
Kirchhoffslaw 370670.53 0%
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Comparison to baseline policies

lazy random greedy rolling-horizon monte-carlo Kléopatra anticipative
lower-bound

0

0.5

1

G
ap

Policy Kléopatra Rolling-horizon Monte-Carlo

Runtime 90s 600s 5400s

Table: Runtime for each time step
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Conclusion

Contributions:
▶ Deep Learning pipeline for the Dynamic VRPTW
▶ Generalization of the learning approach

▶ Julia open source implementation in InferOpt.jl2 [Dalle et al., 2022]

Perspectives:
▶ There is still room for improvement, especially on the policy to imitate

2https://github.com/axelparmentier/InferOpt.jl 12/13
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Theorem

Let x ∈ X , ȳ ∈ Y(x). Let C(ȳ) = {θ ∈ Rd(x) : θ⊤g(ȳ) ≥ θ⊤g(y), ∀y ∈ Y(x)} the
normal cone associated to ȳ.

1. θ 7→ L(θ, ȳ) is piecewise linear and convex, with subgradient
g(f(θ))− g(ȳ) ∈ ∂θL(θ, ȳ).

2. θ 7→ Lε(θ, ȳ) is C∞ and convex with gradient
∇θLε(θ, ȳ) = E[g(f(θ + εZ))]− g(ȳ).

3. Lε(θ, ȳ) ≥ L(θ, ȳ).
4. C(ȳ) is the recession cone of P(ȳ).
5. Let θ ∈ Rd(x). If η is in C(ȳ)\{0}, then λ 7→ L(θ + λη, ȳ) is non increasing. If in

addition C(ȳ) ̸= Rd(x), then λ 7→ Lε(θ + λη, ȳ) is decreasing.
6. Let θ ∈ Rd(x). If η is in the interior C̊(ȳ) of C(ȳ), then

lim
λ→∞

L(θ + λη, ȳ) = lim
λ→∞

Lε(θ + λη, ȳ) = 0.
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Features

Observed Distribution knowledge
x coordinate xr Quantiles from distribution of travel time to all locations:
y coordinate yr 1% quantile Pr[X < x] ≤ 0.01, X ∼ tr,:
demand qr 5% quantile Pr[X < x] ≤ 0.05, X ∼ tr,:
service time sr 10% quantile Pr[X < x] ≤ 0.1, X ∼ tr,:
time window start lr 50% quantile Pr[X < x] ≤ 0.5, X ∼ tr,:
time window end ur Quantiles from distribution of slack time to all time windows:
time from depot to request td,r 0% quantile Pr[X < x] ≤ 0, X ∼ u: − (lr + sr + tr,:)
relative time depot to request td,r/ur − sr) 1% quantile Pr[X < x] ≤ 0.01, X ∼ u: − (lr + sr + tr,:)
time window start / rem. time lr/(Tmax − τe) 5% quantile Pr[X < x] ≤ 0.05, X ∼ u: − (lr + sr + tr,:)
time window end / rem. time ur/(Tmax − τe) 10% quantile Pr[X < x] ≤ 0.1, X ∼ u: − (lr + sr + tr,:)
is must dispatch 1τe+∆+td,r > ur 50% quantile Pr[X < x] ≤ 0.5, X ∼ u: − (lr + sr + tr,:)

15/13



More theory Features Other results Static VRPTW

Predictors

Linear Graph Neural
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Other experiments

Num. of training instances
1 2 5 10 15 20 25 30

9.29% 6.64% 5.95% 4.56% 3.79% 4.48% 3.91% 3.84%

Size of training instances
10 25 50 75 100

8.05% 5.78% 4.00% 5.06% 10.39%

Imitated upper-bound strategies
best seed 60 min 15 min 5 min

6.68% 5.97% 4.79% 3.49%
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Vehicle Routing Problem with Time Windows (VRPTW)

Depot: vehicles capacity Q

Requests v ∈ V

1. Coordinates p
⇒ costs cv,v′

2. Time Windows [ℓ, u]

3. Demand q

4. Service time s

Depot

Request 1
Request 2

Request 3

Request 4
Request 5

Request 6

Objective: build feasible routes serving all requests at minimum cost
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Vehicle Routing Problem with Time Windows (VRPTW)
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State-of-the-art algorithm: Hybrid Genetic Search (HGS)

▶ Genetic algorithm
▶ Maintains a population of solutions
▶ Improves it over the iterations using crossover combined with neighborhood

searches

See [Vidal, 2021] for details.
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