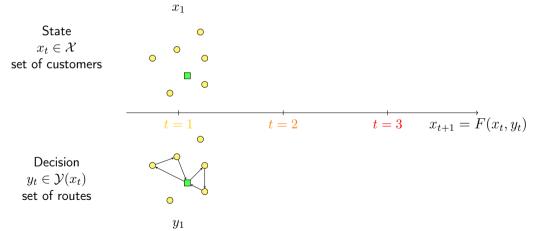
Winning Approach for the EURO-NeurIPS 2022 Dynamic Vehicle Routing Competition

Léo Baty¹, Kai Jungel², Patrick Klein², Maximilian Schiffer², Axel Parmentier¹

¹CERMICS, École des Ponts, ²Technical University of Munich

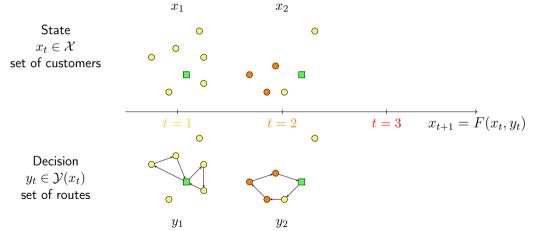
February 21, 2023

Dynamic Vehicle Routing Problem with Time Windows (Dynamic VRPTW)

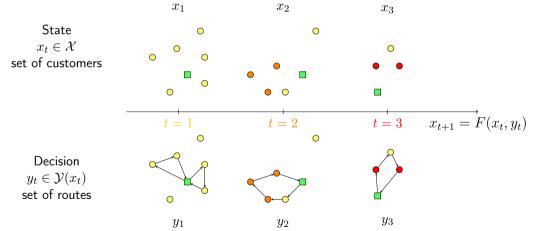


Introduction	Policy encoded as a Deep Learning pipeline
•000	o

Dynamic Vehicle Routing Problem with Time Windows (Dynamic VRPTW)



Dynamic Vehicle Routing Problem with Time Windows (Dynamic VRPTW)



1/13

Dynamic VRPTW

A solution of this problem is a **stationary policy**:

 $\pi \colon \mathcal{X} \to \mathcal{Y}$ $x_t \mapsto y_t$

Objective: find π^* , serving all customers before end of horizon, and minimizing total cost

$$\pi^{\star} = \operatorname*{argmin}_{\pi} \mathbb{E} \left[\sum_{\text{epochs } t} \text{ total cost of routes in decision } y_t = \pi(x_t) \right]$$

Winner team of the EURO-NeurIPS challenge

Euro-NeurIPS competition¹

- 100 entering customers at each time step
- maximum 2 minutes per time step
- Our team won first prize of the challenge

• Policy π_w , Machine Learning (ML) and Combinatorial Optimization (CO) pipeline

$$\underbrace{ \begin{array}{c} \text{State} \\ \hline x_t \in \mathcal{X} \end{array} } \left(\begin{array}{c} \text{Neural Network} \\ \varphi_w \end{array} \right) \underbrace{ \begin{array}{c} \text{Objective} \\ \theta = \varphi_w(x_t) \end{array} } \left(\begin{array}{c} \text{CO algorithm} \\ \arg \max \theta^\top y \\ y \in \mathcal{Y} \end{array} \right) \underbrace{ \begin{array}{c} \text{Decision} \\ y_t \in \mathcal{Y} \end{array} }$$

¹https://euro-neurips-vrp-2022.challenges.ortec.com/

1 Policy encoded as a Deep Learning pipeline

2 Training the policy

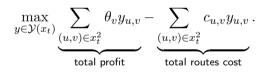
Policy based on a Deep Learning pipeline

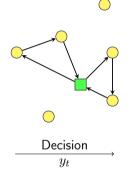


Policy based on a Deep Learning pipeline

Epoch decisions can be seen as the solution of a Prize Collecting VRPTW:

- Serving customers is optional
- Serving customer v gives prize θ_v
- > Objective: maximize total profit minus routes costs

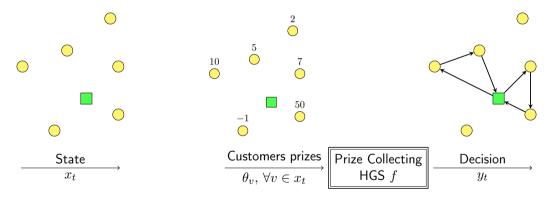




- Algorithm: Prize Collecting Hybrid Genetic Search
- \Rightarrow Combinatorial Optimization layer f

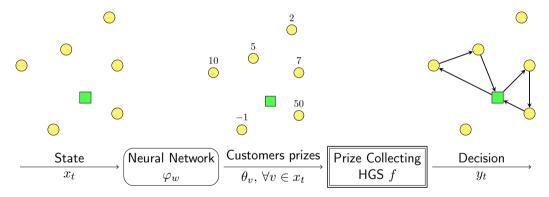
Policy based on a Deep Learning pipeline

Difficulty: no natural way of computing meaningful prizes



Policy based on a Deep Learning pipeline

Solution: use a neural network to predict request prizes $\theta = \varphi_w(x_t)$



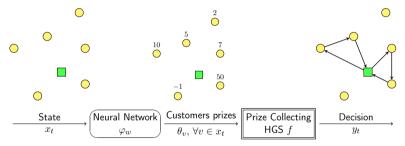
Parameterized policy: $\pi_w \colon x_t \longmapsto f(\varphi_w(x_t))$

Policy encoded as a Deep Learning pipeline

2 Training the policy

Learning problem

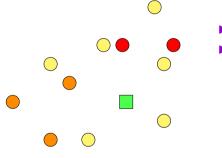
Goal: find parameters w such that our pipeline is a "good" policy.



$$\hat{w} = \underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\varphi_w(x^i), \bar{y}^i)$$

We need to build a labeled dataset $\mathcal{D} = \{(x^1, \bar{y}^1), \dots, (x^n, \bar{y}^n)\}.$

Learn to imitate anticipative decisions



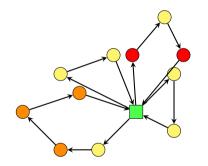
- Full instance with all future customers
- Release times:
 - t = 1
 t = 2
 - ► t = 3

Policy encoded as a Deep Learning pipeline

Training the policy

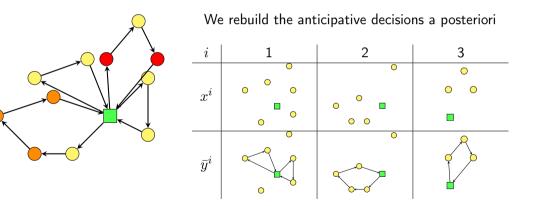
Results

Learn to imitate anticipative decisions



- Full instance with all future customers
- Release times:
 - t = 1
 t = 2
 - ► t = 3
- ▶ Hybrid Genetic Search [Vidal, 2021]
- Anticipative lower bound

Learn to imitate anticipative decisions



A natural loss function

$$(x, \bar{y}) \in \mathcal{D}$$
, $\theta = \varphi_w(x)$

$$f \colon heta \longmapsto rgmax_{y \in \mathcal{Y}(x)} heta^ op g(y) + h(y)$$

with
$$g(y) = \left(\sum_{u \in x} y_{u,v}\right)_{v \in x}$$
 and $h(y) = -\sum_{(u,v) \in x^2} c_{u,v} y_{u,v}$

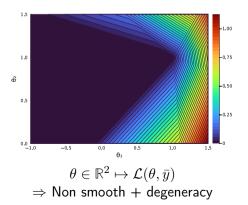
Non-optimality of target routes \bar{y} as a solution of f

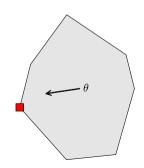
$$\mathcal{L}(\theta, \bar{y}) = \max_{y \in \mathcal{Y}} \{ \theta^\top g(y) + h(y) \} - (\theta^\top g(\bar{y}) + h(\bar{y}))$$

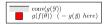
A natural loss function

Non-optimality of target routes \bar{y} as a solution of f

$$\mathcal{L}(\theta, \bar{y}) = \max_{y \in \mathcal{Y}} \{ \theta^{\top} g(y) + h(y) \} - (\theta^{\top} g(\bar{y}) + h(\bar{y}))$$







Building a differentiable loss

Theorem [Berthet et al., 2020, Baty et al., 2023]

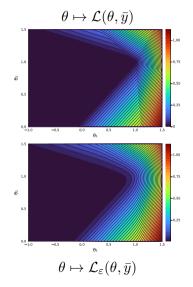
The perturbed loss function

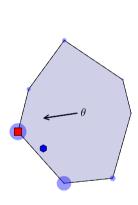
$$\mathcal{L}_{\varepsilon}(\theta, \bar{y}) = \mathbb{E}\left[\max_{y \in \mathcal{Y}} (\theta + \varepsilon Z)^{\top} g(y) + h(y)\right] - (\theta^{\top} g(\bar{y}) + h(\bar{y}))$$

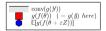
with $\varepsilon \in \mathbb{R}_+,$ and $Z \sim \mathcal{N}(0, I_d),$ is convex and differentiable in θ

$$\nabla_{\theta} \mathcal{L}_{\varepsilon}(\theta, \bar{y}) = \mathbb{E} \left[g \left(\underset{y \in \mathcal{Y}}{\operatorname{argmax}} (\theta + \varepsilon Z)^{\top} g(y) + h(y) \right) \right] - g(\bar{y})$$
$$= \mathbb{E} [g(f(\theta + \varepsilon Z))] - g(\bar{y})$$

Introduction







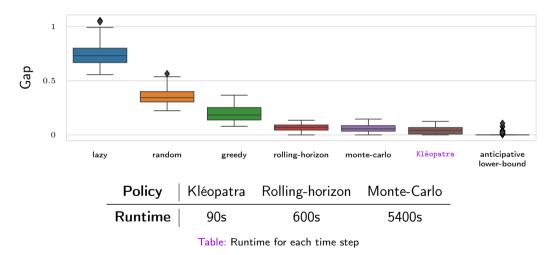
Policy encoded as a Deep Learning pipeline

2 Training the policy

Our team Kléopatra wins the Euro-NeurIPS competition

Team name	Dynamic cost	Improvement over 9th team
Kléopatra	348831.56	5.9%
Team_SB	358161.36	3.3%
OptiML	359270.09	3.1%
HustSmart	361803.57	2.4%
ORberto Hood and the Barrymen	362481.13	2.2%
UPB	367007.49	1%
Miles To Go Before We Sleep	369098.13	0.4%
HowToRoute	369797.03	0.2%
Kirchhoffslaw	370670.53	0%

Comparison to baseline policies



Conclusion

Contributions:

- Deep Learning pipeline for the Dynamic VRPTW
- Generalization of the learning approach
 - Julia open source implementation in InferOpt.jl² [Dalle et al., 2022]

Perspectives:

> There is still room for improvement, especially on the policy to imitate

²https://github.com/axelparmentier/InferOpt.jl

- Baty, L., Jungel, K., Klein, P., Parmentier, A., and Schiffer, M. (2023). Combinatorial optimization enriched machine learning to solve the dynamic vehicle routing problem with time windows.
- Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-P., and Bach, F. (2020). Learning with Differentiable Perturbed Optimizers. arXiv:2002.08676 [cs, math, stat].
- Dalle, G., Baty, L., Bouvier, L., and Parmentier, A. (2022).
 Learning with Combinatorial Optimization Layers: A Probabilistic Approach.
- 📄 Vidal, T. (2021).

Hybrid Genetic Search for the CVRP: Open-Source Implementation and SWAP* Neighborhood.

Theorem

Let $x \in \mathcal{X}$, $\bar{y} \in \mathcal{Y}(x)$. Let $\mathcal{C}(\bar{y}) = \{\theta \in \mathbb{R}^{d(x)} : \theta^{\top}g(\bar{y}) \ge \theta^{\top}g(y), \forall y \in \mathcal{Y}(x)\}$ the normal cone associated to \bar{y} .

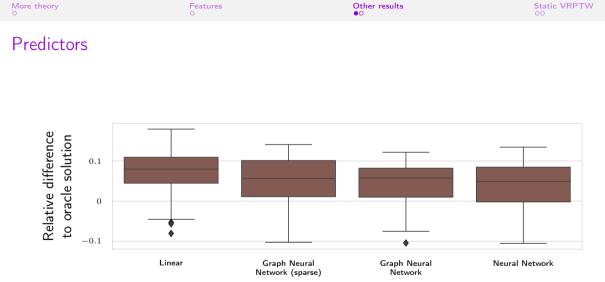
- 1. $\theta \mapsto \mathcal{L}(\theta, \bar{y})$ is piecewise linear and convex, with subgradient $g(f(\theta)) g(\bar{y}) \in \partial_{\theta} \mathcal{L}(\theta, \bar{y}).$
- 2. $\theta \mapsto \mathcal{L}_{\varepsilon}(\theta, \bar{y})$ is \mathcal{C}^{∞} and convex with gradient $\nabla_{\theta} \mathcal{L}_{\varepsilon}(\theta, \bar{y}) = \mathbb{E}[g(f(\theta + \varepsilon Z))] g(\bar{y}).$
- 3. $\mathcal{L}_{\varepsilon}(\theta, \bar{y}) \geq \mathcal{L}(\theta, \bar{y}).$
- 4. $\mathcal{C}(\bar{y})$ is the recession cone of $\mathcal{P}(\bar{y}).$
- 5. Let $\theta \in \mathbb{R}^{d(x)}$. If η is in $\mathcal{C}(\bar{y}) \setminus \{0\}$, then $\lambda \mapsto \mathcal{L}(\theta + \lambda \eta, \bar{y})$ is non increasing. If in addition $\mathcal{C}(\bar{y}) \neq \mathbb{R}^{d(x)}$, then $\lambda \mapsto \mathcal{L}_{\varepsilon}(\theta + \lambda \eta, \bar{y})$ is decreasing.

6. Let
$$\theta \in \mathbb{R}^{d(x)}$$
. If η is in the interior $\mathring{\mathcal{C}}(\bar{y})$ of $\mathcal{C}(\bar{y})$, then

$$\lim_{\lambda \to \infty} \mathcal{L}(\theta + \lambda \eta, \bar{y}) = \lim_{\lambda \to \infty} \mathcal{L}_{\varepsilon}(\theta + \lambda \eta, \bar{y}) = 0.$$

More theory O	Features •	Other results	Static VRPTW
Features			

Observed		Distribution knowledge		
× coordinate	x_r	Quantiles from	n distribution of travel time to all locations:	
y coordinate	y_r	1% quantile	$Pr[X < x] \le 0.01, X \sim t_{r,:}$	
demand	q_r	5% quantile	$Pr[X < x] \le 0.05, X \sim t_{r,:}$	
service time	s_r	10% quantile	$Pr[X < x] \le 0.1, X \sim t_{r,:}$	
time window start	l_r	50% quantile	$Pr[X < x] \le 0.5, X \sim t_{r,:}$	
time window end	u_r	Quantiles from	n distribution of slack time to all time windows:	
time from depot to request	$t_{d,r}$	0% quantile	$Pr[X < x] \le 0, X \sim u_{:} - (l_r + s_r + t_{r,:})$	
relative time depot to request	$t_{d,r}/u_r - s_r)$	1% quantile	$Pr[X < x] \le 0.01, X \sim u_{:} - (l_r + s_r + t_{r,:})$	
time window start / rem. time	$l_r/(T_{max}-\tau_e)$	5% quantile	$Pr[X < x] \le 0.05, X \sim u_{:} - (l_r + s_r + t_{r,:})$	
time window end / rem. time	$u_r/(T_{max}-\tau_e)$	10% quantile	$Pr[X < x] \le 0.1, X \sim u_{:} - (l_r + s_r + t_{r,:})$	
is must dispatch	$\mathbb{1}_{\tau_e + \Delta + t_{d,r}} > u_r$	50% quantile	$Pr[X < x] \le 0.5, X \sim u_{:} - (l_r + s_r + t_{r,:})$	



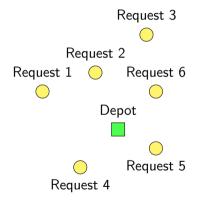
More theory	Features	Other results	Static VRPTW
O	○	○●	

Other experiments

Num. of training instances											
1		2	5	1		15		20	25		30
9.29%	6.6	4%	5.95%	4.5	6% 3	3.79%	4.4	48%	3.91%	3	.84%
			Siz	e of t	rainin	g insta	ances				
		10) 2	5	50		75	10	00		
		8.05	5% 5.7	8%	4.00%	ó 5.0	06%	10.3	39%		
Imitated upper-bound strategies											
		I	best seed	60	min	15 n	nin	5 mii	n		
			6.68%	5.	97%	4.79	%	3.49%	6		

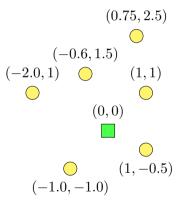
More theory	Features	Other results	Static VRPTW
0	0	00	•0

Depot: vehicles capacity Q**Requests** $v \in V$



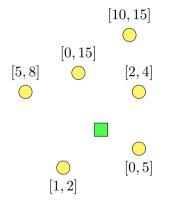
More theory	Features	Other results	Static VRPTW
0	0	00	•0

Depot: vehicles capacity QRequests $v \in V$ 1. Coordinates p \Rightarrow costs $c_{v,v'}$



More theory	Features	Other results	Static VRPTW
0	0	00	•0

Depot: vehicles capacity QRequests $v \in V$ 1. Coordinates p \Rightarrow costs $c_{v,v'}$ 2. Time Windows $[\ell, u]$

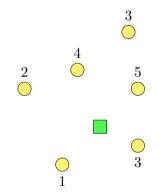


More theory	Features	Other results	Static VRPTW
0	0	00	•0

Depot: vehicles capacity Q

Requests $v \in V$

- 1. Coordinates p
 - \Rightarrow costs $c_{v,v'}$
- 2. Time Windows $[\ell, u]$
- 3. Demand q

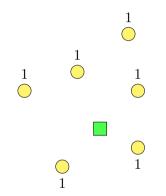


More theory	Features	Other results	Static VRPTW
0	0	00	•0

Depot: vehicles capacity Q

Requests $v \in V$

- 1. Coordinates p
 - \Rightarrow costs $c_{v,v'}$
- 2. Time Windows $[\ell, u]$
- 3. Demand q
- 4. Service time s

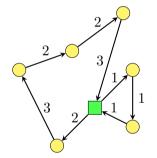


More theory	Features	Other results	Static VRPTW
0	0	00	•0

Depot: vehicles capacity Q

Requests $v \in V$

- 1. Coordinates p
 - \Rightarrow costs $c_{v,v'}$
- 2. Time Windows $[\ell, u]$
- 3. Demand q
- 4. Service time s



Objective: build feasible routes serving all requests at minimum cost

State-of-the-art algorithm: Hybrid Genetic Search (HGS)

- Genetic algorithm
- Maintains a population of solutions
- Improves it over the iterations using crossover combined with neighborhood searches
- See [Vidal, 2021] for details.