Combinatorial optimization and decision-focused learning for stochastic tail assignment

Léo Baty, Axel Parmentier

CERMICS, École des Ponts

January 23, 2025

The tail assignment problem

► Instance *x*:

Introduction

- available aircraft fleet
- set of flight legs to operate
- Decision y: assign each leg to an aircraft
- Objective: minimize operational cost
- ightharpoonup Operational constraints $\mathcal{Y}(x)$

Example instance

Aircraft	Location	Fuel Factor
1	D	1.0
2	C	2.0
3	В	3.0

(a) Fleet

Flight Leg	Origin	Destination	Departure Time	Arrival Time
1	В	А	12:00	13:00
2	C	А	12:30	14:30
3	D	Α	12:00	15:00
4	Α	D	15:10	18:10
5	Α	С	15:30	17:30
6	Α	В	16:00	17:00

Introduction

0000000

Mixed-integer linear programming formulation:

$$\min_{y \in \mathcal{Y}(x)} \theta^{\top} y$$

Introduction

0000000

Connection graph and example solution

Introduction

0000000

The **stochastic** tail assignment problem

The **stochastic** tail assignment problem

Introduction

Results

The **stochastic** tail assignment problem

We want to also have delay resilience:

```
min
                   operational cost + \mathbb{E}_{delays}[delays cost]
   routes u
subject\ to\ \begin{cases} valid\ routes,\\ maintenance\ constraints,\\ mandatory\ connections. \end{cases}
```

Introduction

Decision-focused learning pipeline

Results

Introduction

000000

Delay propagation

Delay propagation equations:

$$\overbrace{\mathsf{Arrival}}^{\xi_\ell^a} \underbrace{\mathsf{delay}}_{\mathsf{Departure}} = \underbrace{\xi_\ell^d}_{\mathsf{Root}} \underbrace{\varepsilon_\ell^a}_{\mathsf{Root}}$$

Decision-focused learning pipeline

$$\underbrace{\frac{\text{Departure delay}}{\xi_{\ell_j}^d} = \underbrace{\frac{\text{Propagated delay}}{\max\left(\xi_{\ell_{j-1}}^a - \omega_{\ell_{j-1},\ell_j},0\right)} + \underbrace{\frac{\text{Root departure delay}}{\varepsilon_{\ell_j}^d}}_{}$$

Root delay prediction model:

- Neural network: learn delay distribution from historical data
- Used to evaluate delay cost of solutions
- Used to generate scenarios for optimization

Sample average approximation

We can sample i.i.d. scenarios with our delay model:

$$\min_{y \in \mathcal{Y}(x)} \mathbb{E}_{\xi}[c^0(y; x, \xi)] \approx \min_{y \in \mathcal{Y}(x)} \frac{1}{S} \sum_{s=1}^{S} c^0(y; x, \xi_s)$$

Compact MIP

 c^0 is non-linear:

- non-linear delay propagation
- piecewise linear delay cost
- ⇒ linearization leads to poor scaling with instance size and number of scenarios

\min_y	$\frac{1}{S} \sum_{s=1}^{S} c^{0}(y; x, \xi_{s})$	
s.t.	$\sum_{a \in \delta^-(v) \cap \mathcal{A}^i} y_a^i = \sum_{a \in \delta^+(v) \cap \mathcal{A}^i} y_a^i,$	$\forall v \in \mathcal{V}, \forall i \in \mathcal{I},$
	$\sum y_a^i = 1,$	$\forall i \in \mathcal{I},$
	$\sum_{a \in \delta^{+}(s) \cap \mathcal{A}^{i}} y_{a}^{i} = 1,$	$\forall i \in \mathcal{I},$
	$\sum_{a \in \delta^{-}(t) \cap \mathcal{A}^{i}} y_{a}^{i} = 1,$	$orall \ell \in \mathcal{L},$
	$i\in\mathcal{I}\ a\in\delta^-(\ell)\cap\mathcal{A}^i$ $y_a^i\in\{0,1\},$	$\forall i \in \mathcal{I}, \forall a \in \mathcal{A}^i.$
		9/1

Dantzig-Wolfe decomposition

- non-linearity is hidden in route costs c_m^i relaxation can be solved with column
- generation \implies good quality lower bound
 - subproblem: constrained shortest path
 - can scale to large instances and more scenarios
- restricted master heuristic to generate integer solutions \implies still does not scale well

s.t.
$$\sum_{i\in\mathcal{I}}\sum_{r\ni\ell,r\in\mathcal{R}^i}y_r^i=1, \qquad \forall \ell\in\mathcal{L},$$

 $\sum \sum c_r^i y_r^i$

 \min

$$\begin{split} \sum_{r \in \mathcal{R}^i} y_r^i &\leq 1, & \forall i \in \mathcal{I}, \\ y_r^i &\in \{0, 1\}, & \forall i \in \mathcal{I}, \, \forall r \in \mathcal{R}^i. \end{split}$$

Decision-focused learning pipeline

- Mathematical programming formulations have difficulty to scale on large instances
- They can be used to generate training data, (x, \bar{y}) pairs on small instances.
- We can then learn a parametrized policy as a decision-focused learning pipeline:

Learning problem: find w such that $\pi = f \circ \varphi_w$ is a good policy.

Fenchel-Young loss over integer solutions:

$$\mathcal{L}_{\mathcal{Y}}^{\mathrm{FYL}}(\theta, \bar{y}) = \mathbb{E}_{Z} \left[\max_{y \in \mathcal{Y}(x)} (\theta + \varepsilon Z)^{\top} y \right] - \theta^{\top} \bar{y},$$

Decision-focused learning pipeline

 $\varepsilon > 0$. $Z \sim \mathcal{N}(0, I)$.

- $\triangleright \mathcal{L}_{\mathcal{V}}^{\mathrm{FYL}}(\theta, \bar{y})$ is convex and differentiable in θ .
- Subgradient:

$$\mathbb{E}_{Z} \left[\underset{y \in \mathcal{Y}(x)}{\operatorname{argmax}} (\theta + \varepsilon Z)^{\top} y \right] - \bar{y} \in \partial_{\theta} \mathcal{L}_{\mathcal{Y}}^{\mathrm{FYL}}(\theta, \bar{y})$$

This loss is not well-defined on relaxation solutions $y \in \tilde{\mathcal{Y}}(x)$.

Learning algorithm 2: imitating column generation relaxation solutions

Fenchel-Young loss over column generation relaxation solution:

$$\mathcal{L}_{\tilde{\mathcal{Y}}}^{\mathrm{FYL}}(\theta, \bar{y}) = \mathbb{E}_{Z} \left[\max_{y \in \tilde{\mathcal{Y}}(x)} (\theta + \varepsilon Z)^{\top} y \right] - \theta^{\top} \bar{y}.$$

Results

Experiment setup

Instances

- ► Train/validation: small instances solvable with mathematical programming formulations.
- ► Test: larger instances

Features: distributional information about connection slacks Solutions

- $ightharpoonup \mathcal{D}^{\tilde{\mathcal{Y}}}$: dataset with solutions of the column generation relaxation with 100 scenarios
- $\triangleright \mathcal{D}_{1}^{\mathcal{Y}}$: dataset with integer solutions with 1 scenario
- $\triangleright \mathcal{D}_{10}^{\mathcal{Y}}$: dataset with integer solutions with 10 scenarios

Performance on small instances

Introduction 0000000

Training dataset	$\mathcal D$	$\tilde{\mathcal{Y}}$	$\mathcal{D}_1^{\mathcal{Y}}$		$\mathcal{D}_{10}^{\mathcal{Y}}$	
Evaluation dataset	Train	Val	Train	Val	Train	Val
Gap to lower bound Total cost improvement	3.3% -0.7%	4% -0.8%	5.9% +0.8%	4.6% +0.04%	5.9% +0.6%	3.5% -0.02%

Performance scaling on large instances

Training dataset	$\mathcal{D}^{\tilde{\mathcal{Y}}}$	$\mathcal{D}_1^{\mathcal{Y}}$	$\mathcal{D}_{10}^{\mathcal{Y}}$
Gap to lower bound		6.2%	, •
Total cost improvement	-27%	-25%	-25%

Introduction 0000000

Thank you!