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The tail assignment problem

> x:

P available aircraft fleet
P set of flight legs to operate

> y: assign each leg to an aircraft
> : minimize operational cost
» Operational V(x)
rorlﬁgy operational cost = fuel cost + connection cost
valid routes,
subject to maintenance constraints,

mandatory connections.
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Example instance

Aircraft | Location | Fuel Factor

1 D 1.0

2 C 2.0

3 B 3.0

(a) Fleet
Flight Leg | Origin | Destination | Departure Time | Arrival Time

1 B A 12:00 13:00
2 C A 12:30 14:30
3 D A 12:00 15:00
4 A D 15:10 18:10
5 A C 15:30 17:30
6 A B 16:00 17:00

(b) Flight legs to operate
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Deterministic tail assignment problem

Mixed-integer linear programming formulation:

min 0y
yeYV(x)
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Connection graph and example solution

Leg 1l —— Leg 4 Leg 1 Leg 4

S—25—— O\ 7

Leg2 —— Leg 5 Leg 2 ——> Leg 5

(a) Connection graph (b) Feasible solution
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Connection graph and example solution
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The tail assignment problem
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The tail assignment problem

Delay
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The tail assignment problem

We want to also have delay resilience:

min  operational cost + Eqelays[delays cost]
routes y

valid routes,
subject to maintenance constraints,

mandatory connections.
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@ Mathematical programming formulations

@ Decision-focused learning pipeline

© Results
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Delay propagation
Delay propagation equations:

d
& & £y

Arrival delay = Departure delay + Root arrival delay

Departure delay = Propagated delay + Root departure delay
| ——
d d
fej max (523,1 — Wy 0 O) €¢;

Root delay prediction model:
» Neural network: learn delay distribution from historical data
» Used to evaluate delay cost of solutions

» Used to generate scenarios for optimization
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Sample average approximation

We can sample i.i.d. scenarios with our delay model:

S
1
min E¢[c° T, ~ min — o 1x, Es
i, el (y;2,6)] yey(x)S;:l (y; 7, &s)
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Compact MIP

c is non-linear:

» non-linear delay
propagation
» piecewise linear delay
cost
— linearization leads to
poor scaling with instance size
and number of scenarios

min

s.t.

1 S
E Z Co(y;xags)

s=1

Z yfl: Z yé, YveV, Viel,
acs— (v)NA? aedt (v)NA?

d>ooyi=1, Vi e T,
a€dt(s)NA?

>ooy=1, Viel,
a€d— (H)NAi
SOy =1 Ve,
1€ a€6— (£)NA?

y: € {0,1}, Vi eI, Vae A.
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Dantzig-Wolfe decomposition

» non-linearity is hidden in route costs c.

» relaxation can be solved with column
generation = good quality lower
bound

» subproblem: constrained shortest
path

» can scale to large instances and more
scenarios

» restricted master heuristic to generate
integer solutions = still does not
scale well

min Z Z ciyﬁ

Yy - .
€L reR

st. > > y=1, Yl e L,
i€ rolreR:
>y <1, Vi€ T,
reRrt
yh € {0,1}, Vie I, VreR.
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@ Decision-focused learning pipeline
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Decision-focused learning pipeline
0@00

» Mathematical programming formulations have difficulty to scale on large instances
» They can be used to generate training data, (z,y) pairs on small instances.

» \We can then learn a parametrized policy as a decision-focused learning pipeline:

CO layer
Instance Neural Arc weights Y —|—f Feasible routes
network i argmax 'y
zex  (network Yu ) (01)iczacai | yev(a) y=I0)

: find w such that 7w = f o ¢, is a good policy.
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Learning algorithm 1: imitating integer solutions

Fenchel-Young loss over integer solutions:

Eg;YL(H,Q) =Ez | max (6 + EZ)Ty —0'y,
yeY(x)
e>0, Z~N(0,I).
> L5YE(6,7) is convex and differentiable in 6.
» Subgradient:

Ez [argmax(& + aZ)Ty] —yE 89£§,YL(9, 0)
yeV(z)

This loss is not well-defined on relaxation solutions y € Y(z).
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Learning algorithm 2: imitating column generation relaxation solutions

Fenchel-Young loss over column generation relaxation solution:

L5(0,9) = Ez [ max (6 + €Z)Ty] —-0'y.
yEY(x)
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© Results
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Experiment setup

» Train/validation: small instances solvable with mathematical programming
formulations.

P> Test: larger instances

. distributional information about connection slacks

» DY: dataset with solutions of the column generation relaxation with 100 scenarios
» DY: dataset with integer solutions with 1 scenario

> D%: dataset with integer solutions with 10 scenarios
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Performance on small instances

Training dataset DY DY DY,
Evaluation dataset Train Val Train Val Train Val

Gap to lower bound 33% 4% 5.9% 4.6% 5.9% 3.5%
Total cost improvement -0.7% -0.8% +0.8% +0.04% +0.6% -0.02%
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Performance scaling on large instances
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Training dataset DY DY DY
Gap to lower bound 41% 62% 6.5%
Total cost improvement -27% -25% -25%
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Thank you !

17/17



	Introduction
	Mathematical programming formulations
	Decision-focused learning pipeline
	Results

